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Second Virial Coefficients in Closed Form 
for a Kihara ( 2 m -  m)-Potential 

W. Witsche l  1 
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In the literature second virial coefficients are calculated by series expansions or 
by direct numerical integration. For thermodynamic quantities such as thermo- 
dynamic functions, analytical expressions are wanted. This paper gives closed 
formulas for the second virial coefficient for a convex-body Kihara potential of 
the type U(p)= Uo[(pO/p)Zm--2(pO/p)m], where m can be a rational number 
n > 3. Furthermore, a number of related problems such as dielectric virial 
coefficients and Buckingham-Pople integrals are reduced to the same Laplace- 
transformation-type technique. 
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1. INTRODUCTION 

The second virial coefficient (SVC) is an important thermophysical 
quantity for the estimation and control of intermolecular potentials. Many 
different potentials have been developed r 1]. Investigations of the inter- 
molecular potential between diatomic and polyatomic molecules showed 
that a simple (14-7)-potential gives good results for the SVC, even if the 
molecular constants a and e did not fit well to scatteringdata [-2]. 

Spherical symmetric potentials are not very well suited for the interac- 
tion of polyatomic molecules; shape, orientation, and spatial extension 
should be taken into account. As such ab initio calculations can be perfor- 
med only for small molecules such as H 2 H2,  several phenomenological 
models have been suggested [3]. The Kihara-convex body potential finds 
wide applications because of its simple form and its succesful description of 
thermophysical properties [4, 5]. 
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(1) It fits well the properties of the dilute gases [6] (a recent exam- 
ple is the interaction of N2N2, where it was better than more 
sophisticated models [7]). 

(2) It yields the coefficient C6 of the van der Waals interaction of the 
right magnitude compared with spectroscopic measurements and 
quantum chemical calculations. 

(3) It resembles the Guggenheim McGlashan potential from crystal 
studies [8]. 

(4) It fits the interatomic potential shape for the test model Ar 2 well, 
though the repulsion energies are too high [9]. 

Up to now all calculations of the Kihara SCV were made either by 
numerical integration or by series expansion introduced by Lennard-Jones 
in 1927 [1]. The results are, therefore, given only numerically. Compact 
analytical expression for the SCV will be valuable. The present article aims 
at the following points: 

(1) to derive a closed analytical formula for the Kihara (12-6)- 
potential; 

(2) to generalize this approach to a (2n-n)-potential, where n can 
be a rational number greater than 3, so that the results for the 
(14-7)-potential are included; 

(3) to give analytical formulas for the thermodynamic functions; 

(4) to give analytical formulas for dielectric and related second virial 
coefficients; and 

(5) to derive Buckingham-Pople integrals in the theory of the 
imperfect gas 1-10], including the shell model approximation. 

2. CALCULATION TECHNIQUES 

2.1. Sketch of the Kihara Potential 

Kihara [ t1-13]  started for polyatomic molecules with a "spherical 
core" potential 

4Uo ~- , for r>d 

U(r) = (oo,  for r<~d 
(1) 
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where 

= o 

U0 = -wel l  depth 

d = hard-core diameter 

Spherical potentials are not suited for planar molecules such as 
benzene or long-chain hydrocarbons. Following the Isihara-Hadwiger 
theory of convex bodies, Kihara suggested an interaction potential of the 
form 

U(p) = o% for p ~< 0 

] (2) 

U(po) = - Uo - De 

where the independent distance variable p is no longer the distance 
between molecular centers but the minimum distance between convex hard 
cores. The body might have any shape as long as it is convex. From the 
known structure of a molecule it is possible to define cores adequate in size 
and shape; examples are the hexagon for benzene and the rod for chain 
molecules. While this potential takes into account nonspherical interactions 
in an average way, no orientation dependence of the depth of the, well is 
usually taken into account. One counterexample is the article by Koide and 
Kihara [14], who calculated for the convex-body theory the potential 
energy curves for various orientations of diatomic molecules and CO2. 
Kihara derived the theory in various reviews [11-13, 15], so that all 
derivations can be omitted and one can start with the relevant formulas. 

2.2. The Second Virial Coefficient for the Kihara Potential 

The second virial coefficient is given as 

fo B = � 8 9  { 1 - e x p [ - U ( p ) / k T ] } ( S c o r c + o + c o r e > a v d p + ( V  . . . .  + . . . .  >gv (3) 

where <Score+p+ .... >AV is the averaged surface area of a convex body 
formed by the center of one molecule as it is moved around the other at 
a distance p between the impenetrable cores 

<S . . . .  +o+ . . . .  ) A v = 2 E S + ( 4 r c ) - I  M 2 ] + 4 M p + 4 ~ p 2  (4) 

( V~ore + .. . .  >AV = 2[ V+ (4x)-1 M S ]  (5) 
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where V, S, and M are the three fundamental measures of the convex body. 
For convenience they are given in Table I, also to illustrate the shape 
dependence. 

For the potential a generalized Lennar&Jones form is assumed: 

n Po m 
v(p)- p" p" (6) 

Cn, Cm>O , n > m > 3  (7) 

Usually n and m are positive integers, but without loss of generality one 
can assume n and m as rational. One can evaluate the equations for the 
SVC in closed form as an infinite series of F functions. Convergence can, as 
was discussed by Mason and Spurling [4 ]  and by Michels [16] ,  be slow. 
With insertion of the fundamental measures of a convex body the SVC 
reads 

fo 2 B =  {1 -exp[-~U(p)]}[4npZ +4Mp+ 2(S+ M2/4n)l dp 

+ 2( V+ MS/4n) (8) 

and with the abbreviation 

Fk=fo {1 -- e x p [ - ~ U ( p ) ]  } pk do (9) 

B=2nF2+2MFI+(S+M2/4n)Fo+(V+MS/4n) (10) 

Table I. Fundamental Measures for Convex Bodies a 

V S M 

Sphere of radius a 4na3/3 4ha 2 4ha 
Regular tetrahedron 2 ~ cos - 1( _ 1/3) 

inscribed in a unit sphere 8 x/-3/27 = 0.5132 8 x/3/3 = 4.6188 = 9.36015 
Regular octahedron 6 x/2 cos -  1(_ 1/3) 

inscribed in a unit sphere 4/3 = 1.333 4 , f 3  = 6.9282 = 10.4450 
Perpendicular cylinder of 

height l, of base area f, and 
of base circumference c f l  2 f  + el nl + (he/2) 

Thin plate as limit l ~ 0 0 2 f  nc/2 
Thin rod as limit f ~  0; 

c - - ,0  0 0 nl 
Regular hexagon 

with side length l 0 3 ~ 12 3nl 

a From Kihara [13]. As the table there is not easily available, the corresponding values are 
repeated here. 
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2.3. Analytical Integration in Closed Form 

In the following text use is made of the Laplace transform-type 
integral [ 17 ]: 

;5 I[a;s;v]= t ~ Xexp(-at2-st)  dt 

= (2a) v/2 F(v) exp(s2/ga) D v [s(2a)-l/2] (11) 

where F(v) is the Ffunction, and D v[s(2a) -I/2] the parabolic cylinder 
function. 

This integral was used by Garrett [18] to calculate the SVC of the 
(12-6) Lennard-Jones potential and, independently, by R6scheisen and 
Witschel [19] for the partition function of an ( x 4 - x  2) anharmonic 
oscillator and by Wetzel and Witschel [20] for the SVC of the Woolley 
potential [21 ]. This is a multiparameter implicit molecular potential which 
gives good results for molecular constants. 

U/Uo = (~b - 1) 2 - 1 (12) 

(r/ro)3=(~-l/2 exp I--~j 3ej(q}-- l ) j] (13) 

where De = U0 is the dissociation energy, ej are parameters to be adjusted 
to molecular spectra or to the derived Dunham or Sandeman coefficients, 
and ro is the equilibrium internuclear distance. For ej = 0 it is 

and 

F =~)--1/6, ~= (14) 

the (12-6) Lennard-Jones potential. Thus, the integration technique 
developed for the Woolley potential can be applied directly. 

We consider 

where m can be a positive integer or a positive rational number. 

(16) 
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Though not as general as the potential in Eq. (6), it generalizes the 
(12-6)-potential and includes for po=ro and p = r  the (14-7)-potential 
mentioned in Section 1. The idea of taking n as rational number was for 
one example discussed by Kihara [12] but was not worked out in detail. 

It remains to solve the integrals Fk, which is done after partial 
integration 

/3 exp[- /?U(p)]  dU pk+ldp ' k~<2, integer (17) 
Fk-- k + l  

As the algebra is straightforward, we give the final result only: 

F~ = - [2/3/(k + 1)3 po k + I u  o exp(/~Uo/2) 

• { (2fiUo) -EI2m k-i)/2m] v(2m~- --1-) D_[{2m_k_ l)/m3[--(2flUo)l/2] 

_ (2/~Uo)-[ ,m k--l)/2m] r( m-k--m 1)0-[( m-k X)/m][_(2flUo)l/2]} 
(~8) 

Thus, this integral formula can be applied in all cases where integrals 
of the type Fk arise. 

For completeness we give the final result for the second virial 
coefficient of an arbitrarily shaped Kihara potential with m = 6: 

2 14 1 1 x ( ~ p o ( 2 e  ) / F ( ~ ) { ~  (2e)1/20 3/2[--(2g.) 1/2] 

/ 2 \ f 2  1/2 --0 1/2[--(28) 1/2 ] --~Mpo(2~)-1/3/ '~-~)#~(28) - 0_5/3 

x I~  (2~)-1/2 0 11/6F-(2~')1/21-0-5/6[-(2c')1/21})~-~ 47EJ 

(19) 

where e =/3Uo. 
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3. NUMERICAL EVALUATION 

3.1. Parabolic Cylinder Functions 

Though the result was given in a compact analytical form, a discussion 
of the numerical evaluation is necessary if parabolic cylinder functions are 
not available in the library of mathematical functions. Kihara [11] has 
given a very short table; longer tables have been given by Connolly and 
Kandalic [21]. 

A further advantage of the present analytical solution is the easy 
analytical calculation of arbitrary temperature derivatives using the well- 
known properties of parabolic cylinder functions. These are necessary for 
the evaluation of thermodynamic functions which include, in contrast to 
the customary calculations with the partition function for bound states, 
also metastable and continuum states. For example, the specific heat is 
written as (Ref. 3, p. 159) 

] C p  cO (B-- B1) 2 
p2 (20) 

where Bn = Tn(dnB/dTn), and all other symbols have their usual meaning. 
We recall [22] 

U(a, x) = D 

U'(a, x) + (x/2) U(a, x) + (a + 1/2) U(a + 1, x) = 0 

U'(a, x)  - (x/2) U(a, x )  + u (a  - 1, x )  = 0 

-a 1/2(x) (21) 

(22) 

(23) 

Subtraction yields 

xg(a,  x) - U(a - 1, x) + (a + 1/2) U(a + 1, x) = 0 (24) 

and straightforward application of these equations gives 

U"(a, x) = [(x2/4) + a] U(a, x )  (25) 

For negative argument ( - x )  the analogous equations can be derived with 
the definition 

V(a, x) = ~-1F[-(1/2) + a] [sin(~a) D ,,_ 1/2(x) -~ D a 1/2( --X)] (26) 

As the confluent hypergeometric series converges quickly, the following 
representation of U(a, i x )  may be helpful for numerical calculations: 
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where 

U(a, +x) x/n2 1/4-"/2exp(-x2/4) 1 1 
- - 7fl--3-]---~ M(2-J 4 '2 '  2 2) 

t4 +2 a) 

-T- F( l~+~al  ) M 2 + 4 ' 2 '  (27) 

az (a)2z 2 (a),z" 
M(a, b, z)= 1 + T + ~ - I -  .-. -t- ~ - I -  .-- (28) 

(a),=a(a+ 1)--. ( a + n -  1) (29) 

is Kummer's confluent hypergeometric function. 
For a quick calculation one can also use the extended tables for 

U(a, x), V(a, x) given in Ref. 22. Using recursion relations and five-point 
Lagrange interpolation gives results of five-figure accuracy. 

Epstein and Roe [-23] and Michels [16] observed from the series for 
the (12-6)-potential that the result can be written in terms of confluent 
hypergeometric functions. They did not use integral transforms. 

4. APPLICATIONS OF THE INTEGRAL TRANSF ORM 

(1) In their monograph on the virial equation of state Mason and 
Spurling [-4] gave many examples for the successful application 
of the (12-6) Kihara potential, which are not repeated here (see 
also Ref. 7). For illustration, we generated two short tables for 
Ar and Ne, (Tables II and III), which show good agreement 

Table II. Second Virial Coefficient for Ar, Using 
a Spherical Kihara (12-6)-Potential; elk  B = 142.1 K, 

a = 3 . 3 6 x  10 l~  hard-core diameter d = 0 . 3 3 6 x  10 -1~  

T [K]  B B~x p 

105.5 -164 .5  -167 .8  +__ 1 
143.16 - 9 4 . 0  - 9 4 . 4  + 1 
153.16 -82 .7  --82.9 _+ 1 
203.16 -46 .1  --46.5 + 1 
223.16 - 3 7 . 0  -37 .3  _+ 1 

a From Dymond and Smith [24]. 



S e c o n d  Vir ia l  Coe f f i c i en t s  1 0 8 3  

Table III. Second Virial coefficient for Ne, Using 
a Spherical Kihara (12-6)-Potential; e/kB = 39.6 K, 

= 2.74 x 10 lo m, hard-core diameter d = 0.105 x 10- lO m 

100 - 5.8 - 6.0 + 1 

200 + 7.5 + 7.6 _+ 1 
300 +11.2 +11.3 + 1 
400 + 12.7 + 12.8 + 1 
600 +13.8 +13 .8+  1 

a From Dymond and Smith 1-24]. 

(2) 

with experimental values taken from the Dymond and Smith 
monograph [24]. The (12-6) Kihara potential was sufficient; an 
application of the general result for rational m was for the rare 
gases not necessary. 

Pressure virial coefficients are only one example for virial expan- 
sions; the same technique can be applied also to electrical and 
optical properties. Expansion of the molar refraction in powers of 
p gives 1-25] 

n 2 - - 1  - - p  I=A~ + BRp+CRp 2... (30) 
n + 2  

where AR,  BR, and CR are the first, second, and third refractivity 
virial coefficients. 

A R = Nct~ 

1 0 B~=4nN2 ~ [-2 ~2t(r)-~I~ exp(-U12/kT) o dr 

(31) 

(32) 

where 

eo = permittivity of free space 

r = interatomic distance 

~(0) = pair polarizability 12 

e(o) = atomic polarizability 

The integral in Eq. (32) is of the form of Fk so that Eq. (18) can 
be applied directly to the calculation of BR. Even complicated 
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(3) 

expressions for e]~ corresponding to a series expansion in 
terms of inverse powers of r can be included in the closed form 
calculation of BR : 

c~]~176176 3 r-6(4TC8o) 2+4[~(~ r-9(4rCeo)-3+ ... 

(33) 

Buckingham and Pople in their classical article on the statistical 
mechanics of imperfect polar gases defined an integral for the 
(12-6)-potential in the form [26] 

o3 1 3 k 4 fo r-kexp(-U/kT) r2dr=~ro y- HR(y) (34) 

6] 
y:2(U~ 1/2 (36) 

Tables for these integrals are given, in addition to those by the 
authors, by Gallagher and Klein E27], who calculated tables of 
the SVC and their first and second derivatives for the Stock- 
mayer (m, 6, 3)-potential function. Recursion relations are given 
in the literature for the HR which are obvious from the recursion 
relations for the parabolic cylinder functions. It is obvious that 
the integral Eq. (34) is identical to the integral Eq. (17) if(dU/dp) 
is replaced by 1. Related to the spherical Kihara model is the 
spherical shell model, where the same integrals also are impor- 
tant. Spurling and DeRocco 1-10] compared both potentials and 
gave a qualitative explanation of why the Kihara potential can fit 
the interaction of dipolar and quadrupolar molecules even if 
these multipole forces are not included directly. 

5. CONCLUSION 

In this article analytical formulas could be derived for the second virial 
coefficient of the Kihara ( 2 m -  m)-potential using an integral transform. 
Furthermore, a number of related applications of the Kihara potential 
could also be given in closed form. 

Though the solution of a one-dimensional integral with arbitrary 
complicated integrand has become trivial with modern computers, a 
closed-form solution is still important for qualitative considerations. 
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